The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X^2 X X X^2 X^3 1 0 X^3+X^2 0 X^2 0 0 X^2 X^3+X^2 0 0 X^2 X^3+X^2 0 0 X^2 X^3+X^2 X^3 X^3 X^3 X^3+X^2 X^3 X^2 X^3 X^3 X^3+X^2 X^2 X^3 X^3 X^3+X^2 X^2 X^3 X^3 X^3+X^2 X^2 X^2 X^3+X^2 X^2 X^2 0 X^2 0 0 X^3+X^2 0 X^2 X^2 0 0 0 X^3+X^2 X^2 0 X^3+X^2 X^2 0 X^3 X^2 X^3+X^2 X^3 X^3 X^2 X^3+X^2 X^3 X^2 X^2 X^3 X^3+X^2 X^2 X^3 X^3 X^2 X^2 0 0 X^3+X^2 X^3+X^2 X^3 0 X^3+X^2 X^2 0 X^2 0 X^3+X^2 0 X^3+X^2 X^2 0 X^3+X^2 X^2 X^3 X^2 X^2 0 0 0 0 X^3 X^3 X^3 0 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 X^3 0 0 0 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 0 X^3 X^3 0 X^3 X^3 0 0 X^3 0 X^3 0 generates a code of length 47 over Z2[X]/(X^4) who´s minimum homogenous weight is 44. Homogenous weight enumerator: w(x)=1x^0+41x^44+56x^45+125x^46+90x^47+105x^48+40x^49+33x^50+4x^51+13x^52+1x^54+2x^55+1x^66 The gray image is a linear code over GF(2) with n=376, k=9 and d=176. This code was found by Heurico 1.16 in 0.078 seconds.